UW-Madison: Material may improve vacuum electronics

Contact:
John Booske, 608-890-0804, booske@engr.wisc.edu;
Dane Morgan, 608-265-5879, ddmorgan@wisc.edu

Madison – Modern tools like microwave ovens and X-ray machines that are powered by intense, focused beams of electrons are ubiquitous, but many of the materials in those devices have remained largely unchanged for decades.

Now, electrical and materials engineers at the University of Wisconsin-Madison have identified a substance that could vastly improve the technology.

This new material, a member of a broad class of compounds called perovskites, could boost the output power of the electron beam and enable long-range communications or remote sensing for a fraction of the current energy costs.

With a $1.3 million grant from the Defense Advanced Research Projects Agency, the researchers aim to synthesize large amounts of the material and further study its properties – as well as search for even more applications.

Devices that may benefit from UW-Madison’s perovskite work draw useful energy from streams of electrons flying through a vacuum, and therefore are called vacuum electronics. Vacuum electronic devices put electron energy to work for a broad array of functions, from accelerating particles in research reactors to detecting distant objects using radar to communicating with interstellar probes cruising past Pluto.

“Anytime you need to efficiently extract energy from an electron stream with a small, compact device, then a vacuum electronic device is your best bet,” says John Booske, a Vilas Distinguished Achievement Professor in electrical and computer engineering at UW-Madison and a principal investigator on the project.

Because electrons traversing sealed vacuums encounter almost no resistance, vacuum electronic devices are remarkably efficient. For example, using a microwave oven to zap frozen burritos harnesses almost 90 percent of the initial energy to heat lunch.